
UPSYCLE: Ubiquitous Publish-Subscribe
Infrastructure for Collaboration on Edge

Networks
TG x Thoth

2020

Table of Contents

1 Abstract 2

2 Introduction & related work 2
2.1 Desirable properties . 2
2.2 Topic-connected overlays . 3
2.3 Interest clustering . 3
2.4 Overlay structure . 4
2.5 Routing . 4
2.6 Event dissemination . 4
2.7 Group encryption . 5

3 Design 5
3.1 Design requirements . 5
3.2 Design overview . 6
3.3 P2P transport . 6
3.4 Interest clustering . 7
3.5 Routing . 8
3.6 Event dissemination . 8
3.7 Reliable causal delivery . 8
3.8 Event synchronization . 9
3.9 Group encryption & membership . 9
3.10 Edge networks . 10

References 10

1

1 Abstract

The UPSYCLE protocol suite enables decentralized and asynchronous topic-based
publish-subscribe communication across the internet and on edge networks. To achieve
this, it combines trust-aware peer sampling, privacy-preserving subscription clustering,
and reliable causal delivery in a two-tier P2P system that consist of a core network
of always-on nodes and edge networks of mobile nodes where core nodes provide
store-and-forward proxy services to mobile nodes to ensure reliable asynchronous
communication across the internet.

2 Introduction & related work

Publish-subscribe [10] is a widely used communication paradigm over the internet
where publishers publish events, while subscribers subscribe to these and receive event
notifications. Various approaches have been proposed: topic-based, content-based, and
type-based. In the topic-based model topics are analogous to communication channels
where subscribers subscribe to topics of interest, and receive event notifications from
publishers for their subscribed topics,

Topic-based publish-subscribe has wide range of applications including event notifica-
tions, database updates, messaging, social interactions and group collaboration, and
more recently in Internet of Things and Distributed Ledger Technologies as well [24].

To address the scalability and reliability issues of centralized approaches, publish-
subscribe in a decentralized setting has been extensively researched, however often
times they lack attack resiliency and privacy properties that would be necessary for
real-world deployments.

2.1 Desirable properties

Decentralized publish-subscribe overlays should satisfy a number of desirable proper-
ties:

• scalability in terms of number of nodes, topics, subscribers per topic, and subscrip-
tions per node

• relay-free routing (also known as topic-connectivity, or topic-connected overlay (TCO),
traffic confinement, and noiselessness): only subscribers of a topic participate in rout-
ing events for that topic

• bounded node degrees
• completeness of event dissemination: all published events should be delivered to

all subscribers
• low duplication factor of event dissemination

2

• low latency of event dissemination
• robustness of the overlay: quick recovery after failures and churn

Equally important but not often considered:

• attack resilience: the overlay should be resilient to known attacks
• subscription privacy: nodes’ subscriptions should be private, only common topic

subscriptions between two nodes should be discoverable

Many of these properties are at odds with each other, and thus balancing these trade-
offs is a key task of publish-subscribe designs. A number of different designs have been
proposed that pick different trade-offs depending on their design goals.

2.2 Topic-connected overlays

Decentralized approaches are based either on structured or unstructured overlay net-
works. Structured approaches are scalable with regards to node degrees, however peers
have to relay traffic they are not interested in and thereby have increased event delivery
latency and traffic overhead. Unstructured approaches are able to achieve or approxi-
mate a topic-connected overlay [6, 8, 21, 25], however keeping node degrees bounded
is a challenge in such overlays.

To achieve topic-connectivity, [6] suggests the following steps:

• Interest clustering to cluster peers with common topic subscriptions
• Inner-cluster dissemination to disseminate events inside clusters
• Outer-cluster routing to route to members of a cluster

2.3 Interest clustering

Interest clustering reduces node degrees by connecting to nodes with overlapping sub-
scriptions that can deliver events from multiple topics over a single connection.

Gossip-based approaches such as [14, 25] typically achieve this by combining a gossip-
based random peer sampling (RPS) protocol [15] with a gossip-based clustering proto-
col.

In gossip-based peer sampling protocols each node maintains a partial view of other
nodes participating in the network, and exchanges this with a random node at each gos-
sip round. However, the random selection process can be trivially biased by malicious
peers who can launch an eclipse attack or hub attack to isolate nodes [16]. Various ap-
proaches have been proposed to tackle this issue, e.g. based on social network analysis
[16], stream samplers [2, 7], and social trust [12].

3

Another important concern with clustering protocols is ensuring subscription privacy.
The naive approach of exchanging full subscription sets [25] has both privacy and scal-
ability issues. This can be improved upon by exchanging Bloom filters of subscriptions
instead [21], which can be further enhanced by randomization to achieve differential
privacy [1]. The loss of accuracy can be compensated by a private set intersection proto-
col to determine the exact set of overlapping topics upon establishing a connection to
a peer. The Bloom filter-based protocol proposed by [20] achieves this in an efficient
manner.

2.4 Overlay structure

TCOs are organized as separate suboverlays per topic where interest clustering helps
with reducing node degrees by reusing links between nodes with overlapping subscrip-
tions to deliver events for multiple topics [6, 18, 21, 25].

Using many suboverlays can quickly lead to high cumulative maintenance costs, there-
fore in order to achieve scalability in terms of number of subscriptions per node, it’s
important to reduce per-topic maintenance costs as much as possible by employing sim-
ple yet robust dissemination structures, such as per-topic rings with random shortcuts
[25] .

2.5 Routing

Outer-cluster routing is necessary to find members for topics in order to join their sub-
overlay.

The interest clustering protocol can take care of this, which can be expedited by making
use of topic priorities in the protocol to be able to prioritize findingmembers for a newly
subscribed topic. However, this approach does not work well when subscriptions sets
are represented as Bloom filters.

Another approach is creating a Small-World Interest-Close Overlay (SWICO) [5, 8]
where nodesmaintain both short-distance connections to interest-close nodes, and long-
distance connections to nodes with dissimilar interests, thereby creating a small-world
network with low diameter and fast routing.

2.6 Event dissemination

The inner-cluster dissemination protocol should deliver all events to all subscribers (a.k.a.
completeness, or totality) while keeping the event duplication factor low.

4

Subscribers should be able to detect missed events and re-request them from other sub-
scribers. By embedding causality information in events, a reliable causal delivery proto-
col can establish partial ordering of events and detect and re-request missed ones [17],
while a probabilistic reliable broadcast protocol can ensure totality, consistency, and
validity properties [13].

2.7 Group encryption

Desirable security properties for decentralized group communication include: authen-
tication, confidentiality, integrity, eventual consistency, forward secrecy (FS) and post-
compromise security (PCS), as well as dynamic group membership.

Many existing protocols aim to solve part of these problems, but either relies on a cen-
tralized entity or lacks certain security properties.

The Signal group protocol relies on two-party communication channels, and thus does
not scale to large groups, the Sender Keys protocol does not provide PCS, Megolm lacks
forward secrecy, while Message Layer Security (MLS) relies on a central entity for total
ordering [26].

The Decentralized Secure Group Messaging protocol proposed in [26] aims to address
these issues.

3 Design

3.1 Design requirements

The design requirements for UPSYCLE and how we achieve them are the following:

Scalability is achieved by minimizing overlay & suboverlay maintenance and by effi-
cient dissemination in suboverlays

Relay-free routing is enforced by creating a suboverlay for each topic
Bounded node degrees are achieved via interest clustering
Low latency & duplication factor as much as the scalability constrains of suboverlay

maintenance allows
Reliable delivery & causal order is ensured by causal barriers and a reactive error recov-

ery mechanism
Subscription privacy subscriptions should be private and only common group mem-

bership between peers should be able to be discovered
Resiliency the use of explicit trust networksmake the protocolsmore resilient to attacks
Minimalism we strive tominimize protocol complexity and hardware resources, e.g. by

avoiding expensive Proof-of-Work computations and by employing a two-tier net-
work to minimize resource requirements for mobile nodes

5

Offline-first nodes on edge networks should have a copy of all the data they subscribed
to and should be able to communicate directly and opportunistically synchronize
with the core network

3.2 Design overview

UPSYCLE is a decentralized publish-subscribe system designed with the requirements
of resource constrained and intermittently connected mobile devices in mind. Since
mobile devices are bandwidth and battery constrained, we propose a two-tier P2P sys-
tem, where a P2P core network runs a set of P2P protocols, while mobile devices form
edge networks for local interaction and connect to one or more remote proxies, which are
always-on nodes that participate in the core P2P network and act as store-and-forward
proxies for mobile nodes. This way it’s sufficient for a mobile node to establish a single
connection to a proxy to reach remote nodes.

It’s important to note here that these proxies only perform store-and-forward message
relaying, and cryptographic user and group identities are independent of them. This
allows amobile node to choose a different proxy at anymoment, or even to use multiple
proxies for redundancy.

This approach avoids the issues of centralized and federated systems (such as Facebook
andMatrix)where user data and identities are tied to a specific server provider, and thus
migration to a different provider is either difficult or impossible. In addition, the use of
proxies also provides location privacy to users, i.e. a user’s IP address is never revealed,
except to the user’s own proxy, which results in VPN-like privacy protections.

Next to connecting to proxies, mobile nodes can also maintain direct P2P connections
with other nodes on the local network where they participate in similar P2P protocols
to the ones in the core network. This allows local collaboration, even without internet
connectivity.

There can be serious privacy implications of exposing groupmembership, especially on
local networks. Therefore, group discovery, both in core and edge networks, is based
on a Private Set Intersection (PSI) protocol. In groups where pseudonymity is desired,
even the discovery of other group members on local networks could be problematic,
and thus users should be able to opt in to local group discovery on a per-group and
per-network basis.

3.3 P2P transport

Peers in the network establish end-to-end encrypted P2P connections among each other.
Gossip-based peer sampling and dissemination protocols rely on these links to reach
other peers in the network. Since gossip-based protocols need to establish new connec-
tions frequently to other peers, it’s important tominimize the connection setup overhead

6

[11, 19], which includes a TCP handshake, a Diffie-Hellman key exchange, and negotia-
tion of cryptographic parameters. Using UDP instead of TCP, as well as protocols with
optimized cryptographic handshakes, caching encryption keys for session resumption,
and keeping connections open for reuse are techniques that help to reduce the connec-
tion setup overhead.

TLS and DTLS are two commonly used transport security protocols for TCP and UDP,
respectively. The recently introduced version 1.3 of TLS brings many improvements to
the handshake process, reducing it to 1-RTT for new connections and 0-RTT for connec-
tion resumption. Version 1.3 of DTLS makes similar improvements for TLS over UDP.

Wireguard [9] is a UDP-based encrypted tunnel protocol based on the Noise Protocol
Framework [22]. It is a considerably simpler protocol than DTLS, with security im-
provements and fast, 1-RTT handshakes. However, it requires setting up static tunnels
among a fixed set of hosts, and thus it is not suitable for a P2P setting where the network
is dynamic and the nodes are not all known before.

For these reasons initially we rely on TLS 1.3 and later DTLS 1.3 once it becomes avail-
able.

3.4 Interest clustering

As in [25], interest clustering is based on a combination of two gossip protocols, random
peer sampling [15] and a similarity-based clustering protocol.

In order to make the peer sampling protocol resilient to attacks [2, 7, 16], we employ
a stream sampler as specified in [2], which filters out over-represented nodes from a
stream of incoming node IDs. The peer sampling protocol also need to limit push from
other peers to limit the influence of any one peer. In contrast to [7] which achieves this
by using proof of work, we opt for pull-only gossip in order to reduce the computational
requirements of the protocol.

The clustering protocol uses Bloom filters to represent subscriptions of a node, as in
[21], to make the exchange of subscription information scalable & privacy-protecting.
To provide subscription privacy with differential privacy guarantees, we randomize the
Bloom filters with random bit flips as described in [1]. The clustering protocol then
computes subscription similarity based on the similarity between randomized Bloom
filters.

Furthermore, we employ an explicit trust network to bias peer selection both in the peer
sampling in clustering protocols, as suggested by [12]. In contrast to [12], we use asym-
metric trust values between peers, and omit transmitting trusted paths in the protocol in
order to avoid issues regarding exposing trust relationships and values between peers,
to make the protocol resilient to malicious nodes trying to spread false information, and
to make the protocol simpler.

7

3.5 Routing

In order to route join requests to members of the target topic suboverlay, we need an
efficient routing mechanism. Small-world networks have low diameter and provide fast
routing and thus would be a desirable structure for the overlay.

To achieve a small-world network topology, as part of the clustering protocol each node
maintains a set of fingers (nodes with the most dissimilar interest) that serve as long-
distance routing links, in addition to the most similar nodes that provide short-distance
routing to nodes with overlapping interest, in a similar fashion to [5]. This prevents the
overlay from forming weak bridges (small number of connections between clusters) and
keeps the overlay diameter low.

3.6 Event dissemination

For event dissemination in suboverlays, UPSYCLE uses a combination of two ap-
proaches: deterministic dissemination over a ring with random shortcuts, as described
in [25]. This approach is simple and comes with minimal maintenance overhead, while
being reasonably efficient in terms of latency and duplication factor.

Byminimizing suboverlaymaintenance overhead, the system can scalewith the number
of subscriptions per node, at the expense of being less efficient in terms of latency and
duplication factor.

3.7 Reliable causal delivery

In order to ensure completeness of dissemination and causal ordering of events, UPSY-
CLE uses a handful of approaches.

We use causal barriers [3, 4, 23] to ensure causal ordering of events in a topic: each event
includes its direct dependencies that must be delivered before. If any dependency of an
event is not yet received by a node, it needs to explicitly request those from other sub-
scribers of the topic before it can deliver the event. Since event delivery can be delayed
due to the different paths events can take, requesting missing dependencies should be
only done after a delay, as part of a reactive error recoverymechanism described in [17].

In practice, this means that each event has an ID based on its content hash, and the
following header fields that facilitate causal ordering and allow detecting missed mes-
sages:

Direct dependencies List of event IDs that are direct dependencies of this event. This
ensures causal delivery.

8

Concurrent events List of event IDs that are independent but concurrent to this event.
This allows nodes to detect missed events unrelated to the current one, and also
serves as an implicit acknowledgement of the receipt of the referenced events.

Explicit acknowledgements can also be used to ensure event delivery, these are empty
messages that list the events to be acknowledged as their direct dependencies.

3.8 Event synchronization

Synchronization of received events among two peers is necessary in a couple of scenar-
ios. A new subscriber who has just subscribed to a topic maywant to receive past events
sent to the group. Similarly, rejoining subscribers would want to synchronize events
they missed. Furthermore, during normal operation of the dissemination protocol, it
might happen that an event is not delivered to a subscriber, which can be detected since
causal dependency information is included in each event. In this case one can request
missed events from other subscribers of the topic.

3.9 Group encryption & membership

We use the decentralized secure group messaging protocol suite described in [26].

The main components of this protocol suite are:

Authenticated Causal Broadcast (ACB) authenticated messaging service that we use
over the P2P pub/sub dissemination channels

Decentralized Group Membership (DGA) protocol that establishes an eventually
consistent membership set with causal ordering despite concurrent membership
changes

Two-party Secure Messaging (2SM) end-to-end secure messaging protocol with PCS
Public Key Infrastructure (PKI) protocol for retrieving public key material and

ephemeral pre-keys for group members
Decentralized Continuous Group Key Agreement (DCGKA) protocol for deriving

keys for group members in response to messages received and membership
change events, which keys are subsequently used for group message encryption.

Eventual consistency with causal delivery is a key building block for this protocol suite,
as well as public key-addressed user and group identities.

Applied to the two-tier P2P setting, this protocol suite enables end-to-end secure com-
munication channels directly between end-user devices, without proxies being able to
decrypt application messages.

9

3.10 Edge networks

Nodes on LANs run the same set of protocols as the core network, but instead of using
a peer sampling protocol for discovery that provides a partial view of the network, each
node periodically announces its presence on the network by sending its public key to an
IPmulticast address reserved for this purpose. This allows nodes to construct a full view
of the network by listening on this address for peer announcements. From this point on,
the rest of the protocols are the same: the clustering protocol can use this full view of
the local network to discover peers with overlapping subscriptions and join per-topic
suboverlays.

References
[1] Alaggan, M., Gambs, S. and Kermarrec, A.-M. 2012. BLIP: Non-interactive

differentially-private similarity computation on bloom filters. Symposium on self-
stabilizing systems (2012), 202–216.

[2] Anceaume, E., Busnel, Y. and Sericola, B. 2013. Uniform node sampling service
robust against collusions of malicious nodes. 2013 43rd annual IEEE/IFIP interna-
tional conference on dependable systems and networks (DSN) (2013), 1–12.

[3] Araujo, J.P. de 2019. A communication-efficient causal broadcast publish/subscribe sys-
tem.

[4] Araujo, J.P. de, Arantes, L., Duarte Jr, E.P., Rodrigues, L.A. and Sens, P. 2019.
VCube-PS: A causal broadcast topic-based publish/subscribe system. Journal of
Parallel and Distributed Computing. 125, (2019), 18–30.

[5] Ariyattu, R. and Taıäni, F. 2017. Filament: A cohort construction service for de-
centralized collaborative editing platforms. (2017).

[6] Beraldi, R., Quéma, V., Querzoni, L. andTucci-Piergiovanni, S. 2007. TERA: Topic-
based event routing for peer-to-peer architectures. (Jan. 2007), 2–13.

[7] Bortnikov, E., Gurevich, M., Keidar, I., Kliot, G. and Shraer, A. 2009. Brahms:
Byzantine resilient random membership sampling. Computer Networks. 53, 13
(2009), 2340–2359.

[8] Chen, C. and Tock, Y. 2015. Design of routing protocols and overlay topologies
for topic-based publish/subscribe on small-world networks. (Dec. 2015), 1–7.

[9] Donenfeld, J.A. 2017. WireGuard: Next generation kernel network tunnel. NDSS
(2017).

[10] Eugster, P.T., Felber, P.A., Guerraoui, R. and Kermarrec, A.-M. 2003. The many
faces of publish/subscribe. ACM computing surveys (CSUR). 35, 2 (2003), 114–
131.

10

https://www.academia.edu/download/32383514/Blip-LNCS-Proof.pdf
https://www.academia.edu/download/32383514/Blip-LNCS-Proof.pdf
https://hal.archives-ouvertes.fr/hal-00804430/file/paper.pdf
https://hal.archives-ouvertes.fr/hal-00804430/file/paper.pdf
https://tel.archives-ouvertes.fr/tel-02105743v2/document
https://tel.archives-ouvertes.fr/tel-02105743v2/document
https://arxiv.org/pdf/1706.08302.pdf
https://ftaiani.ouvaton.org/ressources/DAIS17_Filament.pdf
https://ftaiani.ouvaton.org/ressources/DAIS17_Filament.pdf
https://doi.org/10.1145/1266894.1266898
https://doi.org/10.1145/1266894.1266898
https://www.cs.technion.ac.il/~gabik/publications/Brahms-COMNET.pdf
https://www.cs.technion.ac.il/~gabik/publications/Brahms-COMNET.pdf
https://doi.org/10.1145/2830013.2830017
https://doi.org/10.1145/2830013.2830017
https://www.wireguard.com/papers/wireguard.pdf
https://didattica.uniroma2.it/assets/uploads/corsi/144538/publish-subscribe.pdf
https://didattica.uniroma2.it/assets/uploads/corsi/144538/publish-subscribe.pdf

[11] Frey, D., Guerraoui, R., Kermarrec, A.-M., Koldehofe, B., Mogensen, M., Monod,
M. andQuéma, V. 2009. Heterogeneous gossip. ACM/IFIP/USENIX international
conference on distributed systems platforms and open distributed processing (2009), 42–
61.

[12] Frey, D., Jégou, A., Kermarrec, A.-M., Raynal, M. and Stainer, J. 2013. Trust-aware
peer sampling: Performance and privacy tradeoffs. (2013).

[13] Guerraoui, R., Kuznetsov, P., Monti, M., Pavlovic, M., Seredinschi, D.-A. and Von-
lanthen, Y. 2020. Scalable byzantine reliable broadcast (extended version). arXiv
preprint arXiv:1908.01738. (2020).

[14] Jégou, A. 2014. Harnessing the power of implicit and explicit social networks through
decentralization. Université Rennes 1.

[15] Jelasity,M., Voulgaris, S., Guerraoui, R., Kermarrec, A.-M. andVan Steen,M. 2007.
Gossip-based peer sampling. ACM Transactions on Computer Systems (TOCS). 25,
3 (2007), 8–es.

[16] Jesi, G.P., Montresor, A. and Steen, M. van 2010. Secure peer sampling. Computer
Networks. 54, 12 (2010), 2086–2098.

[17] Martori, J. and Urso, P. 2016. Reliable causal delivery with probabilistic design. Tech-
nical Report #RR-8985. INRIA Nancy.

[18] Matos,M., Nunes, A., Oliveira, R. and Pereira, J. 2010. StAN: Exploiting shared in-
terestswithout disclosing them in gossip-basedpublish/subscribe. IPTPS (2010),
9.

[19] Matos, M., Schiavoni, V., Riviere, E., Felber, P. and Oliveira, R. 2014. LayStream:
Composing standard gossip protocols for live video streaming. 14-th IEEE inter-
national conference on peer-to-peer computing (2014), 1–10.

[20] Nagy, M., Cristofaro, E. de, Dmitrienko, A., Asokan, N. and Sadeghi, A.-R. 2013.
Do i know you? – efficient and privacy-preserving common friend-finder proto-
cols and applications. Cryptology ePrint Archive, Report 2013/620.

[21] Patel, J., Rivière, É., Gupta, I. and Kermarrec, A.-M. 2009. Rappel:
Exploiting interest and network locality to improve fairness in publish-
subscribe systems. Computer Networks. 53, (Aug. 2009), 2304–2320.
DOI:https://doi.org/10.1016/j.comnet.2009.03.018.

[22] Perrin, T. 2018. The noise protocol framework. (2018).

[23] Prakash, R., Raynal, M. and Singhal, M. 1997. An adaptive causal ordering algo-
rithm suited tomobile computing environments. Journal of Parallel andDistributed
Computing. 41, 2 (1997), 190–204.

[24] Savolainen, P., Juslenius, S., Andrews, E., Pokrovskii, M., Tarkoma, S. andPihkala,
H. 2020. The streamr network: Performance and scalability. (2020).

[25] Setty, V., Steen, M. van, Vitenberg, R. and Voulgaris, S. 2012. PolderCast: Fast,
robust, and scalable architecture for P2P topic-based pub/sub. (Dec. 2012), 271–
291.

11

https://hal.inria.fr/docs/00/87/29/96/PDF/Trust-aware-peer-sampling.pdf
https://hal.inria.fr/docs/00/87/29/96/PDF/Trust-aware-peer-sampling.pdf
https://arxiv.org/pdf/1908.01738.pdf
https://tel.archives-ouvertes.fr/tel-01135867/file/JEGOU_Arnaud.pdf
https://tel.archives-ouvertes.fr/tel-01135867/file/JEGOU_Arnaud.pdf
https://www.distributed-systems.net/my-data/papers/2007.tocs.pdf
https://www.distributed-systems.net/my-data/papers/2010.cn-sps.pdf
https://hal.inria.fr/hal-01405896/file/article.pdf
https://www.usenix.org/legacy/events/iptps/tech/full_papers/Matos.pdf
https://www.usenix.org/legacy/events/iptps/tech/full_papers/Matos.pdf
https://eprint.iacr.org/2013/620
https://eprint.iacr.org/2013/620
https://doi.org/10.1016/j.comnet.2009.03.018
https://noiseprotocol.org/noise.html
https://pdfs.semanticscholar.org/c6e3/ab34b770021c6cca74f4e8dd2c7e1c898b96.pdf
https://pdfs.semanticscholar.org/c6e3/ab34b770021c6cca74f4e8dd2c7e1c898b96.pdf
http://streamr-public.s3.amazonaws.com/streamr-network-scalability-whitepaper-2020-08-20.pdf
https://doi.org/10.1007/978-3-642-35170-9_14
https://doi.org/10.1007/978-3-642-35170-9_14

[26] Weidner, M., Kleppmann, M., Hugenroth, D. and Beresford, A.R. 2020. Key
agreement for decentralized secure group messaging with strong security guar-
antees. Cryptology ePrint Archive, Report 2020/1281.

12

https://eprint.iacr.org/2020/1281
https://eprint.iacr.org/2020/1281
https://eprint.iacr.org/2020/1281

	Abstract
	Introduction & related work
	Desirable properties
	Topic-connected overlays
	Interest clustering
	Overlay structure
	Routing
	Event dissemination
	Group encryption

	Design
	Design requirements
	Design overview
	P2P transport
	Interest clustering
	Routing
	Event dissemination
	Reliable causal delivery
	Event synchronization
	Group encryption & membership
	Edge networks

	References

